Department of Mathematics and Statistics

Chair and Professor: DeWayne Derryberry
Assistant Chair and Associate Professor: Wenxiang Zhu

Professors: Shu-Chuan (Grace) Chen, Yu Chen, Robert Fisher, Leonid Hanin, Cathy Kriloff, Turner Laquer, Bennett Palmer, Tracy Payne, James Wolper
Associate Professors: Yury Gryazin, Yunrong Zhu
Assistant Professors at Rank: Xiao Xia (Jessica) Xie
Visiting Assistant Professors: Dmytro Yeroshkin

Goals

- Master's degree students develop a broad knowledge of mathematics and a degree of competence in one field within mathematics.
- Doctoral students develop a broad knowledge of mathematics; learn about the roles of instruction, service, and research in the mathematical profession; and study a mathematical topic in depth, reporting their findings in a thesis that meets professional standards.
- Graduate students find employment in teaching or industry.

Doctor of Arts in Mathematics

The Doctor of Arts in Mathematics is designed to prepare the student for a teaching career in institutions of higher learning. The program emphasizes broad competence in mathematics rather than specialization and makes provision for classroom teaching experience.

Master of Science in Mathematics

The Master of Science in Mathematics is designed to provide a broad and in-depth background and prepare the student for further study at the doctoral level or for an industrial or academic career.

Master of Arts in Mathematics for Secondary Teachers

The Master of Arts in Mathematics for Secondary Teachers (MAMST) is designed for people with a bachelor’s degree who hold a secondary school teaching certificate for the teaching of mathematics and have at least three years of full-time teaching experience. The objective of the program is to enhance the mathematical training of secondary teachers and to equip such teachers with a broad and modern background in mathematics.

Doctor of Arts (D.A.) in Mathematics

Admission Requirements

For admission to the D.A. program in Mathematics, the applicant must meet all admission requirements of the Idaho State University Graduate School as well as the following admission requirements of the department:

1. completion of all requirements for a master's degree equivalent to the M.S. degree in Mathematics at Idaho State University before the start of the initial enrollment;
2. at least 3.5 grade point average (GPA) out of 4.0 in all previous graduate course work;
3. at least the 67th percentile on the quantitative reasoning section and 50th percentile for the average of the percentiles on the verbal reasoning.
4. satisfactory GRE scores (See Item 3 of the above departmental admission requirements);
5. teaching experience;
6. letters of recommendation;
7. applicant's reasons for pursuing the D.A. degree.

An applicant who wishes to be considered for financial assistance must complete a Financial Assistance Application form and submit the completed Financial Assistance Application form directly to the Idaho State University Graduate School.

Applications must be received by April 1 to be given full consideration.

Residence

Up to six credits beyond the master’s degree may be transferred into the program. Two consecutive semesters of full-time study are required in residence.

Committees and Advising

The student will be advised initially by the departmental graduate committee. This group will be the student’s temporary advising committee and will assist in the selection of the student’s permanent committee which will supervise the remainder of the student’s program.

General Requirements

The program requires course work, a thesis, teaching internships, and examinations as described below. The program must include a minimum of 48 credits beyond the master's degree, and at least two 6600-level sequences taken in residence. Approval for optional courses is granted by the departmental graduate committee.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 6625</td>
<td>Real Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6626</td>
<td>Real Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6627</td>
<td>Complex Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6628</td>
<td>Complex Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6631</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 6632</td>
<td>Abstract Algebra II</td>
<td>3</td>
</tr>
</tbody>
</table>
Examinations

2. Oral Examination: An oral examination on the four core areas previously described in Section 1.
3. Final Examination: The candidate will present to the public a lecture on the candidate’s dissertation, and will answer any questions that arise. Following the lecture and question period, the candidate will be examined orally by the candidate’s dissertation committee on topics related to the dissertation.

Doctor of Philosophy in Engineering and Applied Science

A doctoral program in Engineering and Applied Science, administered through the College of Science and Engineering, is available to mathematics students. The complete program description is provided elsewhere in the College of Science & Engineering section of the Graduate Catalog.

Master of Science (M.S.) in Mathematics

Admission Requirements

For admission to the M.S. program in Mathematics, the applicant must meet all admission requirements of the Idaho State University Graduate School as well as the following admission requirements of the department:

1. completion of a bachelor's degree with strong mathematical component before the start of the initial enrollment;
2. at least 3.0 grade point average (GPA) out of 4.0 in upper-division undergraduate course work in mathematics;
3. at least 50th percentile on the quantitative reasoning section of the Graduate Record Examination (GRE) General Test;
4. completion of the course work in modern algebra, differential equations, and analysis courses beyond the calculus sequence.

In addition to completing the application procedure specified by the Graduate School, an applicant to the M.S. program in Mathematics must:

1. submit a letter addressing the applicant's reasons for pursuing the M.S. degree in Mathematics directly to the Idaho State University Graduate School;
2. arrange for at least three confidential letters of recommendation, to be submitted directly to the Idaho State University Graduate School, and addressing the applicant's background and potential for success in the study of advanced mathematics.

An applicant who does not fully meet the departmental requirements will be considered for admission on an individual basis and required to make up the deficiency at Idaho State University in case of admission.

An applicant who wishes to be considered for financial assistance must complete a Financial Assistance Application form and submit the completed Financial Assistance Application form directly to the Idaho State University Graduate School.

Applications must be received by April 1st to be given full consideration.

General Requirements

The Master of Science program in Mathematics provides thesis and non-thesis options. Students choosing either option must take 15 credits in mathematics at the 6600-level, including two full-year sequences. Of the remaining 15 graduate credits required for the degree, at least 9 must be in mathematics. The entire program of study must be approved by the departmental graduate committee.

Students must pass a written examination on one of the 6600-level sequences in their program(s) of study. Those who choose the thesis option must also complete and defend an expository or research thesis, for which they will receive 6 credits of MATH 6649. Those who choose the non-thesis option must pass a final oral examination over all courses in their program(s) of study.
Master of Arts in Mathematics for Secondary Teachers

Admission Requirements

The student must apply to, and meet all criteria for, admission to the Graduate School. In addition to the general requirements of the Graduate School, the student must comply with the following departmental requirements. For full admission to the MAMST program, the applicant:

1. must hold a bachelor’s degree and a standard secondary school teaching certificate in Mathematics;
2. must have at least three years’ full-time teaching experience;
3. must have a GPA of at least 3.0 for the last two years of undergraduate work;
4. must have taken the Graduate Record Examination (GRE), achieving at least the 50th percentile on the quantitative reasoning section of the general aptitude test; and
5. must have completed undergraduate work equivalent to that required for the Idaho State University Teaching Major in Mathematics.

General Requirements

The MAMST degree requires the following:

1. Possession of a bachelor’s degree and a secondary teaching certificate in Mathematics.
2. Completion of a program of study approved by the Graduate Committee of the Department of Mathematics and Statistics and the Dean of the Graduate School.
3. Completion of a minimum of 30 credits beyond the bachelor’s degree in courses numbered 5500 or above.
4. Approval of semester papers as required by the Graduate Committee of the Department of Mathematics and Statistics.
5. Satisfactory performance on comprehensive written and oral examinations on the student’s program of study.

Courses

MATH 5503 Survey of Combinatorics and Graph Theory: 3 semester hours.
Enumeration techniques, including generating functions. Applications. Introductory graph theory. Specific, evaluated graduate-level activities and/or performances are identified in the course syllabus. PREREQ: MATH 1175 AND MATH 2240.

MATH 5504 Topics in Combinatorics and Graph Theory: 3 semester hours.
Continuation of MATH 5503. Application of algebraic, analytic, and/or probabilistic methods to combinatorial, graph-theoretic, and algorithmic problems. Specific, evaluated graduate-level activities and/or performances are identified in the course syllabus. PREREQ: MATH 5503 or permission of instructor.

MATH 5505 Numerical Linear Algebra: 3 semester hours.
Numerical techniques for problems in linear algebra, including solutions of linear systems, least squares, eigenvalue problems, and other topics with an emphasis on computation and applications. Specific, evaluated graduate-level activities and/or performances are identified in the course syllabus. PREREQ: MATH 2240 and ME 1165 or CS 1181, or permission of the instructor.

MATH 5506 Advanced Linear Algebra: 3 semester hours.
Advanced linear algebra with a strong emphasis on proof. Real and complex vector spaces, linear transformations, polynomials associated to matrices, determinants, canonical forms, inner product spaces. PREREQ: MATH 2240.

MATH 5507 Modern Algebra I: 3 semester hours.
Rings, fields, groups, algebras, and selected topics in abstract algebra. PREREQ: MATH 2240 and MATH 2287.

MATH 5508 Modern Algebra: 3 semester hours.
Rings, fields, groups, algebras, and selected topics in abstract algebra. PREREQ: MATH 2240 and MATH 2287.

MATH 5521 Advanced Engineering Mathematics I: 3 semester hours.
Analysis of complex linear and nonlinear engineering systems using advanced techniques, including Laplace transforms, Fourier series and classical partial differential equations. SUGGESTED PREREQ: MATH 3360.

MATH 5522 Advanced Engineering Mathematics II: 3 semester hours.
Analysis of complex linear and nonlinear engineering systems using advanced techniques, including probability and statistics, advanced numerical methods and variational calculus. SUGGESTED PREREQS: ENGR 5521 or MATH 5521.

MATH 5523 Introduction to Real Analysis I: 3 semester hours.
The real number system, topology of metric spaces, sequences, limits, series of functions and convergence, continuity, theory of differentiation and Riemann integration of functions of one variable and several variables, and selected topics on measure theory and integration. SUGGESTED PREREQS: MATH 2240, MATH 2275, and MATH 3326.

MATH 5524 Introduction to Real Analysis II: 3 semester hours.
The real number system, topology of metric spaces, sequences, limits, series of functions and convergence, continuity, theory of differentiation and Riemann integration of functions of one variable and several variables, and selected topics on measure theory and integration. SUGGESTED PREREQS: MATH 4423 or MATH 5523.

MATH 5526 Elementary Analysis: 3 semester hours.
A beginning course in analysis on the real line. Proof writing and the underlying logic are emphasized throughout the course. Topics include sets and functions, sequences, convergence, limits, continuity, and infinite series. Enrollment restricted to students admitted to the MAMST program and approved by the departmental graduate committee.

MATH 5527 Vector Analysis: 3 semester hours.
Calculus of vector functions of several variables, derivative matrix, chain rule, inverse function theorem, multiple integration. Change of variables. Integrals over curves and surfaces. Green’s, Stokes and Divergence Theorems. Applications to Physics. Enrollment restricted to students admitted to the MAMST program and approved by the departmental graduate committee.

MATH 5541 Introduction to Numerical Analysis I: 3 semester hours.
Introduction to standard numerical techniques for solving problems dealing with nonlinear equations, systems of linear equations, differential equations, interpolation, numerical integration, and differentiation. SUGGESTED PREREQS: MATH 2240, MATH 3326 and MATH 3360 or permission of instructor.

MATH 5542 Introduction to Numerical Analysis II: 3 semester hours.
Extension of MATH 5541 for students who wish to pursue more advanced techniques with emphasis on analysis. Typical topics covered include numerical methods applied to partial differential equations, integral equations, and in-depth treatment of topics covered in MATH 5541. SUGGESTED PREREQ: MATH 5541.

MATH 5543 Modern Geometry I: 3 semester hours.
Planar Euclidean geometry. Rigid motions and symmetry in the plane. Enrollment restricted to students admitted to the MAMST program and approved by the departmental graduate committee.

MATH 5544 Modern Geometry II: 3 semester hours.
Transformation groups. Topics from hyperbolic, projective, and other geometries.
MATH 5550 Mathematical Statistics I: 3 semester hours.
Probability, random variables, discrete and continuous distributions, order
statistics, limit theorems, point and interval estimation, uniformly most
powerful tests, likelihood ratio tests, chi-square and F tests, nonparametric tests.
SUGGESTED PREREQS: MATH 3326 and MATH 3352.

MATH 5551 Mathematical Statistics II: 3 semester hours.
Probability, random variables, discrete and continuous distributions, order
statistics, limit theorems, point and interval estimation, uniformly most
powerful tests, likelihood ratio tests, chi-square and F tests, nonparametric tests.
SUGGESTED PREREQS: MATH 3326 and MATH 3352.

MATH 5552 Introduction to Probability: 3 semester hours.
Fundamentals of probability, discrete and continuous random variables,
distributions such as binomial, uniform, Poisson, hypergeometric, normal,
gamma; expectation; joint, marginal, conditional distributions; central limit
theorem; applications to statistics. Emphasizes material needed to develop
statistical inference methods. Enrollment restricted to students admitted to
MAMST program and approved by the departmental graduate committee.

MATH 5553 Topics in Statistics: 1-3 semester hours.
Content varies. May be repeated for up to 6 credits. SUGGESTED PREREQ:
Permission of instructor.

MATH 5555 Operations Research I: 3 semester hours.
Deterministic problems in operations research oriented towards business.
Includes linear programming, transportation problems, network analysis, PERT,
dynamic programming, and elementary game theory. Enrollment restricted to
students admitted to the MAMST program and approved by the departmental
graduate committee.

MATH 5556 Operations Research II: 3 semester hours.
Probabilistic models oriented towards business are treated. Selections from
stochastic processes, Markov chains, queuing theory, inventory theory, reliability,
decision analysis and simulation. Enrollment restricted to students admitted to
MAMST program and approved by the departmental graduate committee.

MATH 5557 Applied Regression Analysis: 3 semester hours.
Simple and multiple linear regression, polynomial regression, diagnostics,
model selection, models with categorical variables. SUGGESTED PREREQS:
MATH 3350 or MATH 3352 or permission of instructor.

MATH 5558 Experimental Design: 3 semester hours.
The linear model for experimental designs, analysis of variance and covariance,
block designs, factorial designs, nested designs, choice of sample size.
SUGGESTED PREREQS: MATH 3350 or MATH 3352 or permission of instructor.

MATH 5559 Applied Multivariate Analysis: 3 semester hours.
Matrix computation of summary statistics, graphical analysis of multivariate
procedures, multivariate normal distribution, MANOVA, multivariate linear
regression, principal components, factor analysis, canonical correlation analysis.
SUGGESTED PREREQS: MATH 2240 and one of the following: MATH 3350,
MATH 5557, MATH 5558 or permission of instructor.

MATH 5560 Differential Equations: 3 semester hours.
Theory and applications of ordinary differential equations. Enrollment restricted
to students admitted to the MAMST program and approved by the departmental
graduate committee.

MATH 5562 Introduction to Complex Variables: 3 semester hours.
Introduction to the study of functions of a complex variable including the algebra
and geometry of complex numbers, analytic functions, power series, integral
theorems, and applications. Enrollment restricted to students admitted to the
MAMST program and approved by the departmental graduate committee.

MATH 5563 Topics in Applied Mathematics: 3 semester hours.
Topics that deal with mathematical methods that find use in other disciplines,
business, and industry. Specific, evaluated graduate-level activities and/or
performances are identified in the course syllabus. Course may be repeated for a
maximum of 6 credits. PREREQ: MATH 2240 and ME 1165 or CS 1181.

MATH 5565 Partial Differential Equations: 3 semester hours.
Equations of the first and second orders, methods of solution, Laplace's Equation,
heat equation, and the wave equation. Emphasis on applications to problems in
the physical sciences and engineering. SUGGESTED PREREQS: MATH 2275
and MATH 3360.

MATH 5581 Special Problems: 1-3 semester hours.
Reading and conference in an area not usually covered by a regular offering.
Individual work under the supervision and guidance of a professor whose
specialty includes the chosen area. Open to seniors and graduate students in good
standing and with the consent of the instructor. May be repeated until 6 credits
are earned.

MATH 5591 Mathematics Seminar: 1-3 semester hours.
Advanced reading and discussion on selected topics in mathematics. May be
taken for credit more than once. SUGGESTED PREREQ: Senior standing or
equivalent.

MATH 5599 Experimental Course: 1-6 semester hours.
This is an experimental course. The course title and number of credits are
noted by course section and announced in the class schedule by the scheduling
department. Experimental courses may be offered no more than three times. May
be repeated.

MATH 6600 Introduction to College Mathematics Teaching: 1 semester hour.
Practical course management issues for teaching mathematics at the college level.
Open only to graduate students in mathematics. May not be repeated. Graded S/ U.

MATH 6610 Topics in College Mathematics Teaching: 1 semester hour.
Theories and research related to mathematics teaching and learning. May be
repeated. Graded S/U.

MATH 6625 Real Analysis I: 3 semester hours.
Measures, the Lebesgue integral, L^p spaces and other normed vector spaces,
approximation theorems. SUGGESTED PREREQ: MATH 5524.

MATH 6626 Real Analysis II: 3 semester hours.
Measures, the Lebesgue integral, L^p spaces and other normed vector spaces,
approximation theorems. SUGGESTED PREREQ: MATH 5524.

MATH 6627 Complex Analysis I: 3 semester hours.
Theory of functions of a single complex variable, including their differentiation,
integration and representation by sums, products and integrals. The Cauchy
integral formula and its consequences, conformal mappings, harmonic functions.

MATH 6628 Complex Analysis II: 3 semester hours.
Theory of functions of a single complex variable, including their differentiation,
integration and representation by sums, products and integrals. The Cauchy
integral formula and its consequences, conformal mappings, harmonic functions.

MATH 6631 Abstract Algebra I: 3 semester hours.
Advanced theory and structural properties of groups, rings, modules, and fields,
including topics such as group actions, universal maps, and Galois theory.
SUGGESTED PREREQS: MATH 5508 or permission of instructor.

MATH 6632 Abstract Algebra II: 3 semester hours.
Advanced theory and structural properties of groups, rings, modules, and fields,
including topics such as group actions, universal maps, and Galois theory.
SUGGESTED PREREQS: MATH 5508 or permission of instructor.
MATH 6633 Matrix Analysis: 3 semester hours.
Eigenvalues, special matrices, normal forms, matrix polynomials, matrix functions, matrix norms, Kronecker products, stability, matrix equations, generalized inverses, nonnegative matrices. SUGGESTED PREREQS: MATH 5506 and MATH 5524.

MATH 6636 Lie Groups and Lie Algebras I: 3 semester hours.
Lie groups, Lie algebras, and their representations. Structure of real and complex Lie algebras. Representations of semi-simple Lie algebras and compact Lie groups. SUGGESTED PREREQS: MATH 5506 and MATH 5507 or permission of instructor.

MATH 6637 Lie Groups and Lie Algebras II: 3 semester hours.
Lie groups, Lie algebras, and their representations. Structure of real and complex Lie algebras. Representations of semi-simple Lie algebras and compact Lie groups. SUGGESTED PREREQS: MATH 5506 and MATH 5507 or permission of instructor.

MATH 6641 Numerical Analysis I: 3 semester hours.
Topics selected from approximation theory, optimization, numerical linear algebra, differential and integral equations, spline analysis, computer algorithms, and other areas of current research in numerical analysis. SUGGESTED PREREQS: MATH 5523 and MATH 5541.

MATH 6642 Numerical Analysis II: 3 semester hours.
Topics selected from approximation theory, optimization, numerical linear algebra, differential and integral equations, spline analysis, computer algorithms, and other areas of current research in numerical analysis. SUGGESTED PREREQS: MATH 5523 and MATH 5541.

MATH 6650 Thesis: 1-6 semester hours.
May be repeated. Graded S/U.

MATH 6652 Stochastic Processes: 3 semester hours.
Topics from conditional probability and expectation, martingales, Kolmogorovs Theorem, Markov processes, random walks, Brownian motion, diffusions, dynamic programming, stochastic differential equations. Applications to modeling physical and/or social dynamical systems. SUGGESTED PREREQ: MATH 5550.

MATH 6653 Advanced Topics in Probability and Statistics: 3 semester hours.
Topics such as experimental design, regression analysis, multivariate statistical analysis. SUGGESTED PREREQS: MATH 3352 and MATH 5506 or permission of instructor.

MATH 6655 Combinatorics I: 3 semester hours.
Theory and applications of: choice and enumeration techniques, generating functions, partitions, designs and configurations, graph theory including digraphs, algebraic graph theory and extremal problems. SUGGESTED PREREQ: Permission of instructor.

MATH 6656 Combinatorics II: 3 semester hours.
Theory and applications of: choice and enumeration techniques, generating functions, partitions, designs and configurations, graph theory including digraphs, algebraic graph theory and extremal problems. SUGGESTED PREREQ: Permission of instructor.

MATH 6662 Differential Equations I: 3 semester hours.
Existence, uniqueness, and dependence of solutions upon initial conditions; linear equations; autonomous equations; dynamical systems and stability; partial differential equations of first and second order, with applications. SUGGESTED PREREQS: MATH 3326, MATH 3327, and MATH 3360.

MATH 6663 Differential Equations II: 3 semester hours.
Existence, uniqueness, and dependence of solutions upon initial conditions; linear equations; autonomous equations; dynamical systems and stability; partial differential equations of first and second order, with applications. SUGGESTED PREREQS: MATH 3326, MATH 3327, and MATH 3360.

MATH 6664 Methods of Applied Mathematics I: 3 semester hours.
Transform, spectral, variational and perturbation methods applied to the analysis of equations involving differential and integral operators. Emphasis on equations arising in physical and biological sciences. SUGGESTED PREREQS: MATH 5506 and MATH 5565.

MATH 6665 Methods of Applied Mathematics II: 3 semester hours.
Transform, spectral, variational and perturbation methods applied to the analysis of equations involving differential and integral operators. Emphasis on equations arising in physical and biological sciences. SUGGESTED PREREQS: MATH 5506 and MATH 5565.

MATH 6667 Functional Analysis I: 3 semester hours.
Major results of functional analysis, such as the Hahn-Banach, open mapping, and closed graph theorems; study of Hilbert and Banach spaces; spectral analysis. SUGGESTED PREREQS: MATH 5523 or MATH 6625 or permission of instructor.

MATH 6668 Functional Analysis II: 3 semester hours.
Major results of functional analysis, such as the Hahn-Banach, open mapping, and closed graph theorems; study of Hilbert and Banach spaces; spectral analysis. SUGGESTED PREREQS: MATH 5523 or MATH 6625 or permission of instructor.

MATH 6671 Topology I: 3 semester hours.
Fundamental theorems and examples from point-set topology; emphasis is on general and metric topologies and continuous mappings; introduction to topology of manifolds, covering spaces, homotopy, homology, and cohomology. SUGGESTED PREREQS: MATH 5573 or permission of instructor.

MATH 6672 Topology II: 3 semester hours.
Fundamental theorems and examples from point-set topology; emphasis is on general and metric topologies and continuous mappings; introduction to topology of manifolds, covering spaces, homotopy, homology, and cohomology. SUGGESTED PREREQS: MATH 5573 or permission of instructor.

MATH 6681 Differential Geometry I: 3 semester hours.
Differentiable manifolds and mappings; bundles, connections, geodesics, and curvature; Lie groups; topics from Riemannian, Hermitian, or symplectic geometry. SUGGESTED PREREQ: MATH 3327.

MATH 6682 Differential Geometry II: 3 semester hours.
Differentiable manifolds and mappings; bundles, connections, geodesics, and curvature; Lie groups; topics from Riemannian, Hermitian, or symplectic geometry. SUGGESTED PREREQ: MATH 3327.

MATH 6691 Directed Reading: 1-3 semester hours.
Reading and problems arranged on an individual basis with a faculty supervisor.

MATH 6692 Doctor of Arts Seminar: 2 semester hours.
Topics include the nature and practice of mathematical research, grants, public speaking, professionally and classroom related software, information media, issues in mathematical pedagogy, standards, and curricula, university organization, history of mathematics. Graded S/U.

MATH 6693 Mathematical Exposition: 1 semester hour.
Presentation of mathematics in a seminar setting. Small group practice in and presentation of mathematics. SUGGESTED PREREQ: MATH 6691.

MATH 6694 Special Topics in Mathematics: 1-3 semester hours.
Each offering will deal with a topic selected from such fields of mathematics as algebra, analysis, geometry, number theory, topology, applied analysis, probability, and mathematical logic. May be taken for credit more than once.
MATH 6699 Experimental Course: 1-6 semester hours.
This is an experimental course. The course title and number of credits are
noted by course section and announced in the class schedule by the scheduling
department. Experimental courses may be offered no more than three times. May
be repeated.

MATH 7700 Supervised Teaching Internship: 1-9 semester hours.
Graded S/U.

MATH 7750 Thesis: 1-6 semester hours.
Graded S/U.

MATH 8850 Doctoral Dissertation: 1-9 semester hours.
Variable credits. May be repeated. Graded S/U.